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Abstract:

Throughout Boltzmann's [ife-fong atomistic study of
irreversibility, he emphasized the one-body distribution
function {1, averaged over many particles, with the
underlying dynamics taken to be a series of two-body
collisions. His derivation of the H Theorem, linking
dynamics and thermodynamics, remains the major
accomplishment in understanding the Second Law of
Thermodynamics. Today his analytic one—-body approach
has [argely been superceded by using fast computers to
simulate many-body "Molecular Dynamics”.

Fermi originated Molecular Dynamics at Los Alamos.
in 1953. His few-body one-dimensional chains [aunched
a generation of numericaf studics of Lyapunov-unstable
ordinary differential equations. By 1972 computers could
simulate 1000-body gases, liquids, or solids, and a new
nonequilibrium mechanics was developing to facilitate
this work. 1n 1984, Nosé made a major contribution. He
showed how to introduce macroscopic variables, such as
temperature, pressure, and heat flux, directly into time-
reversible microscopic equations of motion.

When Nosé's mechanics is applied to nonequilibrium
systems zero-volume "strange attractors” form in the
many-body phase space. The attractors provide a new
explanation for the classical problem of irreversibility
that fascinated Boltzmann. Here 1 trace the evolution of
mofecular dynamics from Fermi's work at Los Alamos to
Nosé's recent work, and 1 speculate on the applicability of
the new nonequilibrium ideas to quantum systems.
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1. Boltzmann, the H{ Theorem, and Molecular Dynamics

1t is fast computers that make molecular dynamics
possible. The resulting dynamical simulations [ink the
time-reversible fundamental viewpoint of microscopic
mechanics to Boltzmann's microscopic, but approximate,
Rinetic theory, as well as to the phenomenological and
time-irreversible macroscopic viewpoints of
thermodynamics and hydrodynamics. These computer
(inks among fundamentals, theory, and phenomenology
change not just our point of view, but also our knowledge
and our way of thinking about physics. n this review 1
describe these changes, beginning with Fermi's seminal
calculations at Los Alamos, and ending on the presentday
research frontier.

Both the underlying conceptual basis and the
mathematical methods of molecular dynamics predate
Boltzmann. Even today, the mechanical equations of
Newton, Hamilton, and Gauss are solved with ancient
algorithms based on Taylor's expansion. But before
computers an algorithmic attack on molecular dynamics
was premature. Maxwell and Boltzmann built Rinetic
theory from classical mechanics by averaging over space
and timel1,2] in order to avoid a head-on attack on the

many-body problem.

The most significant technical difference between
today's computer calculations and Boltzmann's hand
calculations is raw speed. This difference in speed is
responsible for differences in attitude and in goals.
Boltzmann didn't think seriously about calculating alf
the trajectories in a many-body system. 1t was

impossibly complicated. As an alternative, Boltzmann
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introduced distribution functions in order to average
over calculations too time-consuming to contemplate.

The situation is very different today. Historic
textbook complaints bemoaning our inability to solve the
equations of motion are obsolete. Right now the
computers are about twelve orders of magnitude faster
than humans. And parallel processing promises to
increase the ratio much more. Now computers make it
simpler to solve the original trajectory problem than to
work out the average distribution functions. The
trajectories are generated in discrete steps. The
complicated molecular trajectories are divided up into
simpler "timestep"” sections, each of which can be worked
out analytically. Linking these timesteps together
generates an accurate trajectory. To illustrate, Figure 1
displays an approximate harmonic-oscillator
trajectoryl3]. The exact trajectory is an ellipse. The
approximation used in the Figure is typical for
numerical work. 1t is the fourth-order Runge-Xutta
algorithm. With the normal timestep choice, one-sixtieth
of the oscillator period, the error in the Runge—-KXutta
approximation is much too small to see. in the Figure 1
use six steps per period rather than sixty, thereby
increasing the energy error by a factor of one hundred
thousand and making it possible to see two different
errors associated with the numerical method. First, the
amplitude gradually decreases. Second, the phase is
shifted. Both errors are negligibly small for reasonable

timestep choices.

The approximate oscillator trajectory shown in the
Figure captures the style of the approximate trajectories
used in molecular dynamics studies. By the term

"molecular dynamics” we simply mean such a numerical
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soflution of the classical equations of motion, usually for
many bodies. Given the forces, the only approximation is
the use of a finite time step. Normally the effect of that
approximation is demonstrably negligible relative to
statistical errors. The many-body molecular dynamics
trajectories can then replace, if they cover phase space
well enough, the idealized continuous one-body
distributions introduced and studied by Maxwell and
Boltzmann. This reversal, from one-body distributions
to many-body trajectories, occurred only because
ordinary differentiafl equations are more easily sofved
numerically than are partial dif ferential equations.

. The origins of kinetic theory were European. 1in 1905
Mrs. Hearst persuaded Boltzmann to [eave the pleasant
sophistication of Vienna for a summer in California. His
account of that summer is defightful reading [4]. He
(ectured at Berkeley on irreversible processes, fiis favorite
research topic. He visited Livermore, Monterey, and the
new Lick telescope at Mount Hamilton. While surviving
the stress of California's rough roads, [ocal prohibition,
and western cuisine, Boltzmann clearly saw the future,
expecially in the potential of Mrs. Hearst's University of
California. |



A generation [ater, the United States set the pace in
computation, and did so for another generation, using
Wworld war 11's scientific immigrants to develop and
implement differential equations on the world's most
power ful computers. While the war was on, these were
handcranked machines. But the bombs that ended the
war demanded ever more complex calculations. By 1952
the Los Alamos "MANLAL" computer was about a million
times faster than humans[5]. That amazing speed has
now increased by another factor of a million. And the
once—rural institution at which Boltzmann lectured, the
University of California, now controls more CRAYS and
more scientific computing power than any other
institution in the world.



11. Molecular Dynamics Begins at Los Alamos and
Livermore,

Continually-growing computer power fosters ever
more complex physics problems. And there is no limit to
this growth. The most-interesting physics is nonlinear
and "chaotic". in a chaotic problem small changes in
initial conditions [ead to big differences in the
solutions[6-8]. Turbulence is such a problem. These
problems are infinitely harder to solve by hand than are
[inear ones. But nonlinearity is no problem for
computers. They give us a highly—accurate approximate

soflution.

At Los Alamos, computers were vital to predicting
and understanding short-time highly-nonequilibrium
bomb experiments. Patriotism attracted many of the
world's most talented and stimulating scientists to this
work. They speculated on the applicability of growing
computer power to other areas in mathematical physics.
Computation moved from hand calculators to punched
~ cards in 1943, under Feynman's supervision. The war

ended and nearly ten years passed before Los Alamos'
stored-program MANTAC computer was ready.

Fermi moved to Chicago after the war. He remarked
that he would have stayed at Los Alamos had it been a
University. But Fermi still returned in the summers, to
work with Metropolis, Teller, Ulam, and other pioneers.
Fermi had invented one useful many-body technique, the
Monte-Carlo method, [ong before his Los Alamos days.
The dynamic many-body problem, hard even for three
bodies, remained a natural challenge in mechanics.

After the war, as a summer commuter from Chicago, he
8



introduced a primitive molecular dynamics at Los
Alamos.

Fermi wanted to [ink molecular dynamics and
thermodynamics, by watching the Second Law of
Thermodynamics in action. To do this he simulated the
motion of many-body chains of the type displayed in
Figure 2. His idea was to watch many-body systems
approach equilibrium [9], and to compare the results to
the predictions following Boltzmann's one-body H-
theorem route. Though short computer runs worked fine,
one day an overfong computation seemed to reverse and
back away from equilibrium. There was no error. The
backup was real. For studying the approach to
equilibrium, Fermi's choice of system was unfortunate.
He did not realize that one-dimensional chains do not
equilibrate nearly as easily as do two- and three—
dimensional systems. The failure of the chains to
equilibrate surprised Fermi and helped awaken
widespread interest in deterministic chaos in the next

two decades.

Teller wanted a [aboratory to compete with Los
Alamos. The new rival, the Lawrence Radiation
Laboratory, at Livermore, took shape while Los Alamos'
MAN1TAC computer was being developed. At Livermore,
Alder and Wainwright soon tested Boltzmann's one-body
H-Theorem analysis of the approach to equiflibriuml[10].
They studied the motion of 100 three-dimensional hard
spheres. These many-body hard-sphere studies
confirmed Boltzmann's equilibration analysis. Alder
and Wainwright's further studies were conclusive in
showing that the freezing transition, and the existence of
the solid phase, depends only on repulsive forces. The

time—exposure trajectories shown in Figure 3 document
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this early work[11]. Also significant was the
quantitative agreement of the molecular dynamics
calculations with Wood and Parker's Monte-Carlo
simulations of the same systems. The two numerical
techniques were found to agree not just in the
thermodynamic [imit, but even for systems of just a few

particles[12].

These early demonstrations that thermodynamic
phase equilibria, as well as the approach to equilibrium,
could be modelled with just a few interacting particles,
established the utility of molecular dynamics in linking
microscopic and macroscopic behavior. At [ast Maxwell
and Boltzmann's conceptual basis [inking fundamental
microscopic approaches, molecular dynamics, Rinetic
theory and statistical mechanics, to phenomenological
macroscopic approaches, thermodynamics and
hydrodynamics, was secure. There was no [onger any
real doubt that microscopic many-body dynamics could
reproduce macroscopic behiavior. 1t was simply a
question of figuring out how to do it as quickly, easily,
and efficiently as possible.
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111. Applications to Real Solids and Liquids at
Brookhaven, Argonne, and Orsay.

Across the country from Alder and Wainwright's
California calculations with idealized hard spheres,
Vineyard, at Brookhaven on Long 1sland, simulated the
behavior of real irradiated copper crystals. Vineyard
demonstrated the applicability of the many-body
molecular-dynamics techniques to real atomic—scale
problems involving the interaction of high—energy
radiation with matter. His results appeared first on the
cover of the Journal of Applied Physics, reproduced here
as Figure 4.

The conception, execution, and description of these
early calculations were models of simplicity and clarity.
Vineyard characterized nonequilibrium energy storage
following high-energy irradiation. He studied radiation
damage by scattering energetic particles from crystals,
following the individual collisions, with the viscoelastic
boundaries draining off heat to reduce the ef fect of small
system size. He established the importance of “focussing
collisions", which transmit energy, coherently and
through [ong distances[13].

Long before these early days of molecular dynamics,
equilibrium gases and solids were fairly well understood.
Gases could be treated as nearly-independent particles,
while solids could be treated as nearly-independent
phonons. Liquids were more mysterious. 1n principle,
the known many-body equilibrium distribution function
could be integrated over N-2 particle coordinates, to find
the two-body distribution function needed to understand
pressure and energy. But this averaging was too involved



for practical calculations. A generation of physicists
developed complicated distribution—function theories to
discuss liquids[14], but little actually emerged before
computer simulation. With fast computers this
generation's theory became obsofete. After a period of
testing, the old approaches, integral equations, cell
models, and virial series, could be retired, replaced by
perturbation theory.

In the early days of molecular dynamics, "solving"”
another many-body problem had meant making another
computer simulation. But by 1970, perturbation
theoryl15] made possible quantitative predictions of
many-body thermodynamic properties in terms of
reference computer data. The basic two—-body "rejerzm:z-
system"” properties were taken from computer
experiments. A crude example is shown in Figure 3,
where the Lennard~Jones—pair—potential and argon phase
diagrams are displayed together. The Lennard-Jones
potential is not a specially faithful representation of
argon, but is certainly o reasonable reference-system
basis for perturbation calculations. And the perturbation
theory worked well for "simple liquids", meaning
monatomic fluids [ike argon.

With reference-system properties for hard spheres
established at Los Alamos and at Livermore, the idea of
describing liquids, using the more-realistic continuous-
potential case, was acted on by Rahman. Rahman,
working aflone at the Argonne Laboratory near Chicago,
took on an outstanding hard-but-tractable problem in
equilibrium statistical mechanics, the modelling of an
equilibrium monatomic liquid. Rahmanl16] was the
first to study a realistic [iquid with molecular dynamics

and to compare the results with experimental data. The
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structures that he found with 864 atoms were in
agreement with [aboratory experiments and inspired
further molecular-dynamics studies of equilibrium

liquids.

Rahman also measured the equilibrium time-
correlation functions needed to generate the [inear
transport coefficients. Soon after, Verlet, Levesque, and
Kiarkijarvi, in France, took up molecular dynamics and
carried out definitive studies of both thermodynamic and
transport properties of the prototypical Lennard-Jones
[iquid[17]. Since then, with spreading computer power
and interest, molecular dynamics has become a truly
international enterprise[18]. To illustrate this idea, but
without any attempt at completeness, 1 mention as
examples Evans in Australia, Posch in Austria,
Bellemans in Belgium, Xlein in Canada, Singer in
England, Hansen in France, Hess in Germany, Berendsen
in Holland, Rapaport in 1lsrael, lacucci in 1taly, Nose in
Japan, Barojas in Mexico, Dremin in Russia, and
Toxvaerd in Sweden.

13



Most [iquids are polyatomic, not monatomic and
“simple”, and the classical treatment of polyatomic
molecules has remained a subject of theoretical
speculation. Many successful numerical simulations have
appeared[18,19]). The viscosity for butane, for instance,
has been investigated by two completely independent
methods[20] and both simulated results [ie within about
25% of the experimental viscosity. The simulation of
[arge biological mofecules followed naturallyl21], as did
also solid-phase applications in materials science[22], but
with remaining major uncertainties with respect to the
forces and the effect of quantum mechanics on the
dynamics. The main motivation for undertaking (arge—
molecule studies is the rapidly-improving resolution of
experimental techniques. See Figure 6 for a recent
detailed scanning-tunneling-microscope snapshot of

DNA[23].
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1111. Molecular Dynamics Far From Equilibrium.

Equilibrium Newtonian molecular dynamics was
expected to give accurate transport coefficients——
diffusion, viscosity, and thermal conductivity——-through
Green and Kubo's fluctuation theory, but the agreement
with experiment turned out to be poor. The early many-
body simulations of liquid transport properties contained
errors. The calculated triple—point viscosity of liquid
argon, assuming a pairwise—additive Lennard—Jones
potential for the interatomic forces, was considerably too
high. The thermal conductivity was worse, different
from experiment by a factor of two, much too much to
explain on the basis of force—-faw uncertainty. Thus,
resolving disagreements between the equilibrium
fluctuation theoryl17] and experiment was one of the
main motivations for the early nonequilibrium
simulations[24]. Ashurst set out to measure liquid
transport properties by a direct nonequilibrium method,
simulating [aboratory flows with what he called
"Nonequilibrium Molecular Dynamics". independent
related work, but on a smaller scale, was then being
carried in England by Gosling, McDonald, and Singer[25],
and by Lees and Edwards[26].

Transport properties are mainly of interest not for
checking fluctuation theory, but for use in hydrodynamic
simulations of nonequilibrium flows. Of course
sufficiently simple flows can be used to find the
transport coefficients themselves. Nonlinear simulations
of driven systems, in nonequilibrium steady states were
studied at [ength by Ashurst in his Ph. D. thesis work at
Livermore[24]. He developed time-reversible momentum

and heat reservoirs which could be used to drive shear
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flows and heat flows while maintaining steady boundary
temperatures. The boundaries he used, after trying out
many [ess-satisfactory alternatives, are shown in Figure

7-

Ashurst had no vested interest in the use of the
tradiational classic time-irreversible Langevin and
Fokker-Planck stochastic equations. 1nstead, his
instincts [ed toward time-reversible methods. The time-
reversal-invariance of his nonequilibrium equations of
motion is essential to the understanding of irreversibility
discussed in Section V1. His boundary—driven work led
to the steady-state generalization of homogeneous-
deformation dynamics developed independently by Lees
and Edwards[26]. Ashurst devoted serious attention to
boundary conditions, exploring a variety of rigid and
periodic boundaries, both fixed and in motion. This
work fed directly to shear and bulk deformation methods
used to study viscosity and plasticity, identical to those
formalized independently by Andersenl[27] and Parrinello
and Rahman[28] to describe the equilibrium constant—
pressure and constant—stress ensembles.

To of fset thermal fluctuations, molecular dynamics
was typically applied to highly—-nonequilibrium problems.
These were indeed very far from equilibrium, although
not so far away as conditions in a strong shockwave. in
the dynamical shochkwave simulations temperature
changed by thousands of degrees, and pressure by half a
million atmosopheres, in a shockwidth of a few atomic
diameters. The nonequilibrium simulations showed, in
qualitative agreement with experiment, a small but
definite decrease in viscosity with strain rate. The
change of conductivity with increasing temperature

16



gradient could be either an increase or a decrease,
depending on the temperature.

With non-Newtonian boundary conditions a variety
of new simulation types became possible.
Nonequilibrium simulations could include moving
periodic boundaries. Volume and shape changes could be
imposed homogeneously or through displacements
induced by fields or [ocalized at physical boundaries.
These possibilities are illustrated in Figure 8. The first
calculations confirmed that the various approaches gave
consistent results[24]. At Los Alamos, strong
shockwaves[29] were simulated by contracting
boundaries. The results were not very different from the
[inecar-transport Navier-Stokes predictions, despite
gradients much [arger than those typically used in
nonequilibrium simulations. Thus the nonlinear
behavior of the transport coefficients in shockwaves is
very different from that found in the gentler
homogeneous deformations. Despite the very [arge
gradients shockwave transport coef ficients are close to the
zero—-gradient [inear—transport values. This insensitivity
to nonlinearity is still [argely unexplained, though some
fundamental low-density Rinetic-theory studies have
been carried out[30]. Years [ater the reversed case,
expansion, was used to study fragmentation[31,32] and
fracture[33], as shown in Figures 9 and 10.

Eckart Meiburg, in Gozttingen, was the first to carry
out [arge—scale hydrodynamic simulations with
molecular dynamics[34]. Besides the shockwave work,
carlier [ess—extensive smaller—scale studies[35,36] had
[ikewise suggested that molecular dynamics and
hydrodynamics match closely. Computers were becoming

powerful enough to consider again averaging to measure
17



distribution functions. A typical averaged flow field
taken from Meiburg's Master's-thesis work is shown in
Figure 11. 1in that Figure each of Meiburg's arrows
stands for the velocity averaged over about fifty separate
atoms. Like Vineyard's, fiis work is a model of clarity.
He studied the motion of tens of thousands of hard
spheres flowing past an obstruction and observed an
average flow field fooking very much like the initiation
of a von-Xarman vortex street.

More recently, Mareschal, Xestemont, Mansour, and
Puhl[37] have studied Rayleigh-Bénard instability, in
which a fluid heated from below, in a gravitational
Jield, develops cylindrical convection currents. A typical
averaged flow field distribution in shown in Figure 12,
They made a careful comparison of molecular-dynamics
results with hydrodynamic solutions of the Navier-Stokes
equations. The Rayleigh-Bénard model is of special
historic interest through its [ink to the computational
study of chaos introduced in Lorenz'[38] classic paper on
atmospheric turbulence which appeared in 1963.

18



V. 1rreversibility and instability from Time-Reversible
Two-Body Mechanics

Both Newton's and Schrazdinger's equations of
motion are "time-reversible”. This means that any
movie illustrating a Newton or Schreedinger solution can
be run either backward or forward through the movie
projector. Both versions satisfy the same equations of
motion. 1in the reversed direction, the Newtonian
velocities would change sign, as would the corresponding
imaginary component of Schredinger's wave function,
but the time-reversed classical trajectory, or quantum
probability density, is as good a solution of the equations
of motion as the forward one.

The conflict between these fundamental time-
reversible descriptions of motion and the even—-more-
fundamental irreversible behavior of the "real” world has
attracted continuing interest since Boltzmann's time.
Boltzmann focussed attention on the time evolution of the
averaged one-body probability density, f1(q,p,t).

The gas—-phase Boltzmann equation for the time-~
development of {1, as well as the [inearized Xrook—
Boltzmann approximation, and the Fokker-Planck
plasma equation, all evolved from analytic attempts to
express and understand patently-irreversible many-body
phenomena in terms of the one-body distribution
function. These simplifications are [ess necessary today.
We can follow the details of phase-space deformation, as
given by the the time history of the N-body distribution
function fn, for 32-body systems. Today we can generate
accurate trajectories for a million particles. And particle
mechanics has itself been modified to treat the problems
addressed by Boltzmann, Fokker, and Planck. A 1984
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modification of Hamiltonian mechanics, discovered by
Shuichi Nosé and described in Section V1, is the key to
these modern trajectory investigations of irreversible

behavior.

Boltzmann studied the onc—particle distribution
function in dilute nonequilibrium gases. 3His time-
irreversible Boltzmann equation

df1/dt = (9f 1/9t)comietons ,

provided a plausible description averaged over a [arge
number of particles. By ignoring fluctuations and
correfations, Boltzmann estimated the time-dependence
of the one-body-phase-space probability density. His
most famous result, derived from the Boltzmann
equation, was the { Theorem. That theorem shows that
isolated systems irreversibly approach equilibrium.
Thus, Boltzmann's equation already [acked the time—
reversibility of Newtonian mechanics and provided an
approximate entropy function which could not decrease

with time.

The fundamental mechanism underfying the
approach to equilibrium is now known to be “"Lyapunov
instability“[39-43). This instability, and its many-body
generalization to the "Lyapunov spectrum”, describes the
exponential spreading apart of initialfy—neighboring
many-body-phase—space trajectories, as well as the
exponential growth, or decay, of many-dimensional
phase~space hypervolumes. See Figure 13. The
trajectory spreading has to be simultaneously
accompanied by an orthogonal compression because any
Hamiltonian flow, when averaged over all directions in
the phase space, is incompressible. The orthogonal rates

20



of growth and decay of phase-space separation are given
by "Smale Pairs" of Lyapunov exponents, equal in
magnitude but opposite in sign. The idea of measuring
distance between points in phase space might seem
bizarre, because coordinates, momenta, and friction
coefficients all have different physical units. But because
the growth and decay rates are exponential, the
muliplicative choice of scales of the axes are irrelevant.
Exactly the same exponents would result for any other
choice of generalized coordinates and momenta.

In phase space, the spreading instability progresses
from small scales, with hyperspheres elongating into
hyperellipsoids, to [arge scales, at which the deforming
hyperellipsoids must bend to follow the macroscopic
phase—space motion. On the infinitesimal microscale the -
Lyapunov instability can be seen as sensitive dependence
on initial conditions, as revealed by a [inear stability
analysis of the equations of motion.

Figure 14 shows a simple example, the Newtonian
Lyapunov-unstable bouncing of two balls in a constant
vertical gravitational field. The lower of the balls is held
fixed. For clarity, the upper, moving ball is shown as a
mass point. in cartesian [aboratory coordinates the
bounces become more widely separated with each bounce.
In semilogarithmic coordinates the exponential
instability of the motion is clearly apparent.

1n many-body phase space the generalized
exponential Lyapunov instability is described by the
Lyapunov spectruml41-43]. Figure 15 shows typical
many-body spectra for both two- and three-dimensional
fluids and solids. The Smale-pair symmetry of these
equilibrium spectra follows from the equivalence of
21



forward and backward solutions of the equations of
motion. 1n nonequilibrium steady states, this symmetry
is broken, and the sum of the Lyapunov exponents is
negative.

22



V1. Irreversibility from Time-Reversible Many-Body
Mechanics—Nosé's Modification of Hamiltonian
Mechanics

Molecular dynamics replaced a generation of
cumbersome, inadequate, approximate one-body and
two-body theories with simple, accurate many-body
computer experiments. But appropriate analyses of these
experiments required new ideas suited to computation.
This had to wait for a new generation of scientists
brought up to use the computer as a tool, for which new

techniques could be specially designed.

An advance was made by setting aside the
irreversible stochastic approximations well-suited to
slower hand calculations, but not so well-suited to
understanding deterministic trajectory development far
from equilibrium. The classical Langevin and Fokker-
Planck equations had previously been used to impose
temperature, but these approaches are time-irreversible.
The simplest derivation of the Fokker-Planck
equation[44], for instance, assumes an acceleration
proportional to the momentum gradient of a [ocal

entropy:
Adp/dt) = Vp {Lﬂ[f(p)/fquuibﬁ,um(p)]}.

Reversing the sign of the time leaves the [eft side

unchanged while changing the sign of the right side,

revealing the time—-irreversible approximate character of
the Fokker-Planck equation.

23



Nose, from Japan, but working in Canada with
Mike Klein, made the necessary conceptual breakthrough.
Nosé[45] discovered a reversible deterministic form of
Hamiltonian mechanics which reproduces the thermal
canonical distribution. His temperature-dependent
reversible equations describe something [ike a microwave
oven, but capable of cooling reversibly as well as heating.
The Hamiltonian basis of his work is important for two
different reasons. First, the equations of motion, either .
at or away from equilibrium, are time-reversible,
making possible an exact analysis of
thermodynamically-irreversible processes. Second, the
Hamiltonian basis suggests extensions of Nosé's classical
ideas to quantum dynamics and quantum statistical
mechanics. Despite these two advantages, his original
derivation was unnecessarily complex. But the result is
simple, a set of many-body equations of motion,
containing the equilibrium temperature T and at least one
friction coefficient (:

dp/dt = F(q) - Cp ,

where the friction coefficient {, rather than being
constant, is itself determined by a temperature—
dependent time-reversible integral feedback equation:

di/dt = Z[(p2/mRT) - 11/12 ,
with an arbitrary relaxation time 1. Thus the friction
coefficient { increases in those parts of phase space with

above-average temperature and decreases in those parts
where the temperature is below average.
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Noseé's derivation of his equilibrium equations of
motion was relatively complicated. A simpler way to
derive these same equations of motion is to ask the
question Brad Holian posed: "What friction coefficient {
generates the canonical distribution[46]?" A whole series
of "Nosé-Hoover" equations of motion, based on the
various velocity moments <p2N> can similarly be
derived[47].

At equilibrium, or in the nonequilibrium linear-
response regime, Nose's ideas simply reproduce
Newtonian mechanics, with time—-averaged macroscopic
deviations of order 1/N for N-particle systems[48]. But
Nose's ideas can also be used to drive many-body systems
away from equilibrium, with external forces, into
thermostatted nonequilibrium steady states maintained
by one or more Nosé thermostats[49]. Then concepts and
methods borrowed from nonlinear dynamics can be used
to determine and describe the structure of the resulting
phase~space distributions. Once Nosé announced his
discovery, Ashurst’'s work was recognized as a special
case of Nosé's more—flexible feedback recipe.

At equilibrium Nosé discovered a new way to
generate the equilibrium phase—space distribution fn. 1n
the more complex cases away from equilibrium,
something more interesting happens. ‘n any such case
heat is exchanged. it can then be proved that any such
nonequilibrium steady state always produces a fractal
phase~space dimensionality, with an occupied phase-
space dimension reduced below the equilibrium
dimensionality[50-52]. The amazing result that these
distributions never become continuous, no matter how
fine the scale of observation, is, for the many-body
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problem, as exciting and surprising a development as
was the discovery of chaos in mechanics. And that
discovery, which dates back to Poincare, is viewed by
many as revolutionary for physics todayl6-8,53].

What are these ubiquitous fractal objects that
characterize nonequilibrium systems? Fractal objects
have been used in films to represent mountains, clouds,
and water. A recent computer—generated magazine cover
using fractals as a tool, is shown in Figure 16. A
simpler fractal object is the Sierpinski sponge[54], shown
in Figure 17. 1n any fractal the number of pairs of
points varies in a regular way with distance. 1f one
defines a dimensionality for such an object, by asking for
the number of pairs of points lying within a radius r,
that dimensionality is typically not an integer. For the
sponge of Figure 17 the number of pairs of points within
a small distance r of each other varies as r2.727, Thus the
sponge is said to have fractal dimensionality of 2.727.
The object behaves [ike a fractional-dimensional "fractal”
object. That these strange objects describe phase-space
flows was probably unknown to Boltzmann. They are
beautifully illustrated and described in Gleick's book on

Chaosl6].

Developing and demonstrating these ideas required
high—~speed computer graphics. Even so, phase-space
fractals are hard to display in the many-body case.
About the simplest steady-state phase-space fractal
distribution illustrates the one-body Galton-Board
example[55] shown in Figure 18. 1n this example a
single mass point falls through a periodic array of
scatters. The accelerating "gravitational" field is
downward, and the motion is made isokinetic, with the

particle falling at constant speed, by applying Gauss’
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Principle of Least Constraint [47,55]. The resulting phase
space is only three~dimensional. 1in the Figure a phase-
space cross section representing 10,000 successive
collisions is shown. The distribution of distances
between pairs of points in the cross section is consistent

with a fractal dimensionality of about 1.5.

Figure 19 shows two separate ensembles, each with
2500 separate Galton Boards developing in time. 1Initially
the ensemble members are distributed uniformly over two
quadrants of the square phase-space cross section. The
successive images show the ensemble members after 1, 2,
3, 5, and 10 collisions. Note that the ensembles’ cross

sections are approaching the single-trajectory Poincaré
section shown in Figure 18. Simiflar calculations have

been carried out for a low-density shear—flow analog of .
the Galton Board, using both molecular dynamics[56] and

the Boltzmann Equation[57].

Nosé's idea, generalized to nonequilibrium systems,
made possible the marvelous marriage of three poarties,
mechanics, nonlinear dynamics, and irreversible
thermodynamics[50-52]. The new mechanics, with
Nose's computational thermostats built in, showed that
nonequilibrium phase-space distributions are typically
fractal, just [ike the one—-body Galton Board problem
illustrated above. The necessary geometric concepts are
not so new. The basic idea of phase-space mixing was
known to Poincare and the mathematics of strange sets
had been around foi about fifty years when Nosé pointed
the way toward o new synthesis.

With Nosé's dynamics the phase-space deformation
of nonlinear dynamics, the heat reservoirs of

nonequilibrium molecular dynamics, and the inexorable
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entropy increase of irreversible thermodynamics could all
be [inked together. The [ogical connections among these
three concepts involve the three steps indicated in Figure

L. Conservation of comoving probability in
mechanical phase-space flows, refating the time-rate—of-
change of the many-body distribution function to the
corresponding time-rate—of change of phase volume.

11. Steady time-development of phase-volume from
nonlinear dynamics, relating the sum of the Lyapunov
exponents to the sum of Nosé's friction coefficients
through Nosé's equations of motion.

111. Linking the diminishing phase-space volume
with thermodynamics through the heat reservoirs implicit
in Nos¢'s equations of motion. This [ast step establishes
that the impossibility of phase-space growth, in the
steady state, is equivalent to the macroscopic Second Law
of Thermodynamics.

_ To begin with step 1, any mechanical flow in phase

space satisfies a "continuity equation”, with
conservation of the total number of systems studied. To
illustrate, consider the continuity equation of fluid
mechanics,

dp/dt + d(pu)/ox = 0,

where p is the mass density and u is the stream velocity.
The typical textbook derivation of the continuity equation
proceeds by setting the change in mass in a fixed
"Eulerian” volume efement dxdydz equal to the flow
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through the boundaries. This flow is proportional to the
flux pu. The only additional assumptions required to
derive the continuity equation are (i) the differentiability
of the flow velocity and density and (ii) the [ack of
sources or sinks. From the continuity equation the
comoving density derivative (that is, the "Lagrangion"”
derivative following the motion) can be computed.:

dp/dt =dp/ot + u (Jp/dx) = —p(du/dx) ,

Dividing by the density gives a more elegant [ogarithmic
form:

dinp/dt = -(du/dx) .

The divergence of the velocity, du/dx, the sum of the
orthogonal strain rates, is also the [ogarithmic rate of
volume change:

(du/odx) = dinv/dt .

Thus the continuity equation for fluid flow takes the .
form:

dinp/dt = -dinb/dt .

or

dinp/dt +dinb/dt = 0.

Exactly the same idea can be applied to the flow of

many-body probability fluid in the many-body phase

space. ‘1n that case the density function p is replaced by

the N-body probability density fn and the volume V is
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replaced by the 6N~-dimensional phase-space hypervolume
®. Then the corresponding "continuity" equation for the
flow of phase—space probability can be written

dinfn/dt + din®/dt = 0, (1)

where ®fn is the total number of systems -i.n the phase-
space hypervolume ®.

In the second step 11 above, the Lyapunov exponents
used in analyzing many-dimensional flows[43] are
introduced in order to describe the time—averaged
expansion and contraction of the phase-space volume ®.
The exponents give the time-averaged rates of stretching
and shrinking of the principle axes of a deforming
hyperellipsoid in the phase space. 1n nonlinear chaotic
systems the stretching and shrinking occur exponentially
fast in time, varying as exp[At]. See again Figure 15.
The sum of these exponents {1} gives the rate at which
phase-space volume changes:

din®/dt =2 A.
Nosé's equations of motion satisfy identically the relation
dinfn/dt = X{ .

Combining these results with (1) above relates Nosé's
friction coefficients to the Lyapunov exponents:

X =dinfy/dt = ~din®/dt = -ZA . (11)
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Nose's equations of motion also show directly that the
time—averaged friction coefficients <{{}> and the
corresponding instantaneous temperatures <{p2/mk}> are
uncorrelated:

T<lp2/mh>=X<l><p2/mk> .

Thus, the [efthand side, the summed rates of heat
extraction of the Nosé thermostats divided by the
corresponding temperatures, {<p2/mk>}, is exactly equal
to the sum of the Nosé¢ friction coefficients. The [ast step
111, then links dynamics to the Second Law of
Thermodynamics through the friction coefficients {{}in
Nosé's equations of motion:

~dinfn/dt = -X {=-(dS/dt)/k , (111)

where the sum is over all such friction coefficients. The
observation that the steady [ogarithmic rate of volume
change, din®/dt, cannot be positive, and must vanish at

equilibrium, [eads to the conclusion

0 > din®/dt

away from equilibrium. This continuous decrease of
phase—space volume in the nonequilibrium steady state
establishes that Gibbs' equilibrium N-body entropy
definition, 8 = ~kR<Infn>, cannot be used in such
nonequilibrium steady states because the corresponding
nonequilibrium 8 would approach minus infinity.

The steadily-decreasing phase-space hypervolume
implies the full chain of relations
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(dS/dt)/k = T L = +dinfn/dt = ~din®/dt = -Z1>0.

The resulting conclusion—-THE TOTAL ENTROPY MUST
INCREARE--is made possible only through the simpfe
structure of the Nosé equations of motion. This total
entropy includes that of the heat reservoirs in which any
Nose system is embedded. The Gibbs' entropy diverges for
any nonequilibrium steady state. To see this, notice
particularly that the many-body probability density
fn(qN,pN,C,t) diverges[51]. The Second Law of
Thermodynamics, from the standpoint of Nosé
mechanics, becomes equivalent to the observation that a
steady-state distribution function must occupy a
Lyapunov-unstable subspace with reduced
di.mznsi.onati.ty, a zero-volume "strange attractor”. For
such nonequilibrium systems, the Second Law of
Thermodynamics is not simply a high-probability
statement, as with Gibbs' Paradox, but instead a
probability-one statement. This follows from the fact
that the nonequilibrium distributions are zero-volume

fractal objects.

To see this consequence of the fractal many-body
distributions in more detail, consider time reversibility
and Loschmidt's Paradox. Because the many-body
equations of motion are time-reversal-invariant it is
certainly true that the phase space must afso contain a
reversed “repellor” region, just [ike the attractor but with
reversed velocities, in which the Second Law is violated.
Despite the undoubted existence of the repellor the Second
Law cannot be violated by observable motions[50-52].
This is because the reversed "repellor” sofution gepels
rather than attracts nearby trajectories, and thereby acts
as a phase-space source rather than a sink. 1t is an
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unstable phase-space object. Hence the reversed repellor
trajectories, which would theoretically violate the Second
Law of Thermodynamics, can never be observed using
Nose's mechanics.

Thus Nosé's mechanics sheds new [ight on, and
extends, Boltzmann's treatment of irreversible processes.
In this extension, the relevant distributions are many-
body rather than one-body distributions. The underlying
dynamics is the exact many-body dynamics rather than
Boltzmann's approximate one-body dynamics. With
Nosé's mechanics the statements that (1) entropy
production is positive, that (2) heat flows from hot to
cold, and that (3) transport coefficients are positive, all
correspond to rigorous consequences of the equivalent
geometric observation that phase-space hypervolumes
cannot grow in nonequilibrium steady states.

Of course, Nosé's treatment of nonequilibrium
boundaries is not the only possible treatment. But it is
important to recognize that hydrodynamic flows can be
generated and maintained by a variety of equally-valid
boundary conditions. Those features that are common to
a variety of boundaries will be shared by Nosé's choice.
His is simply the most useful because it simplifies the
corresponding theoretical analysis.
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V11. Speculation: Quantum lrreversibility using
"Gaussian" Time-Reversible Schredinger Mechanics.

Gauss formulated mechanics on the basis of a single
principle, his "Principle of Least Constraint”[58]. Gauss’
Principle states that any dynamical constraint should be
implemented by using the [east possible force:

2(F2/2m) minimum, or X(F dF./m) = 0

The sum runs over all degrees of freedom in the
constrained system.

1t is interesting that this Principle, when used to
implement isothermal conditions, by constraining the
Rinetic energy, produces exactly the same motion
equations

dp/dt =F - {p ,

as does Nosé's isothermal mechanics, but with a definite
value for Nosé's relaxation time 1, zero.

The current interest in chaos has [ed to extensive
speculation on "quantum chaos", that is the quantum
behavior of systems with classically-chaotic
Hamiltonians[53,59]. The Schredinger equation is not
well suited to these studies so that a variety of efforts
have been made to extend it to apply to nonequuubnum
open systems[60-62].

First, the Schreedinger Equation is [inear, so that
steady solutions can only oscillate in time. Second, it
describes only thermally-isolated systems, while the
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simplest interpretations of irreversibility in classical
systems involve open systems in which work is converted
to heat through the operation of Nosé thermostats.

We can take Gauss' [east—constraint ideal58] over
into quantum mechanics by restricting the solution of a
constrained Schraedinger Equation, which incorporates the
[east possible change in the quantum equation of motion

(8\[!/ at)am_us = (a\I’/at)Schﬂz_diinqu - z“(lecl) ’

where the {A]} are Lagrange multipliers chosen to satisfy
the constraints {Cj}.

To illustrate, consider the quantum version of the
simple problem introduced in Figure 18, a mass point
moving through a Galton Board under the influence of an
external field[55]. Then the Gaussian constraints {Cj}
correspond to fixing the total mass, momentum, and
energy in the Board. The Gaussian Lagrange multipliers
{Ai} perform work and extract heat. The steady-state
nonequilibrium Schreedinger equation then describes a
steady flow of probability current with fixed mass and
energy. The generalized forces expressed by the Lagrange
multipliers provide momentum at exactly the rate
required to offset the scattering by the Board. The more-
general fluctuating constraint technique introduced.by
Nosé could alternatively be used, controlling generalized
Lagrange parameters with integral feedback and allowing
the mass, momentum, and energy to fluctuate about
prescribed mean values. Here we consider explicitly the
special case in which these flow quantities are fixed.
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1t is convenient to solve the Galton Board problem on
a hexagonal finite-difference grid. To use such a grid
approach, the spatial derivatives are replaced by finite
differences. Then the Gaussian equations of motion
become a set of coupled nonlinear first-order ordinary
differential equations. These equations can be solved
using the same Runge-Xutta method that applies for
classical problems. Sample solutions, on a 41x41 grid,
both transient and time—averaged, are shown in Figures
21-23. We anticipate that solutions of such problems
will [ead not only to distributions approaching the fractal
distributions found classically. They will also reveal the
quantum analog of Lyapunov instability which underfies
the Second Law of Thermodynamics and the
irreversibility that Boltzmann found to be so fascinating.
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V11l. Summary.

The averaging introduced by Maxwell and
Boltzmann disappeared for a while, with fast computers,
but eventually reappeared with a vengeance when both
trajectories, described by ordinary differential equations,
and distributions, described by partial differential
equations, could be found for the same problems. The
intercomparison of these two approaches, using ideas
based in computation rather than in hand calculation,
has [ed to exciting advances in physics.

The distribution—-function analysis of Boltzmann
could be tested by the trajectory calculations of Fermi,
Alder and Wainwright, Vineyard, Rahman, and Verlet,
and, for the first time, validated in cases where the force
[aw was known. The molecular dynamics calculations
superceded the interest in approximate one-body and
two-body distribution functions and stimulated the
advancement of two-body perturbation theory as a way
for "understanding” many-body systems. At the same
time the realism introduced by Vineyard broadened the
audience and has helped make molecular dynamics a
useful tool for understanding far-from-equilibrium
processes in such diverse fields as catalysis, drug design,
fluid dynamics, and materials science.

Nonequilibrium calculations have demonstrated both
the power and the [imits of [inear transport theory and
showed that the boundary conditions are crucial in
simulating and describing far—from-equilibrium
systems. Finally, Nosé's novel approach made it possible
to [ink deterministic microscopic mechanics with phase-
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space distributions and irreversible thermodynamics, in
a way which Boltzmann would have enjoyed.

Where is atomistic computer simulation headed
today? A major trend is toward parallel processing, to
avoid the speed and capacity [imits of a single processor.
This approach promises rapid orders—of -magnitude
increases in speed and capacity. Another direction in
which improving capacity may lead is toward
simulating far-from-equilibrium quantum systems. The
new techniques may well simplify the treatment of
quantum systems which show chaos. 1t is for this reason
that 1 append Erwin Schradinger to the [ist of
precomputer architects of molecular dynamics shown in
Figure 24, Boltzmann, Gauss, Hamilton, Lyapunov, and
Newton.
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FIGURE CAPTIONS

Figure 1. Harmonic-oscillator trajectory via the classic
fourth—order Runge-Kutta method, using six steps per
period to illustrate the approximate nature of the
calculation. The exact trajectory is a periodic ellipse.

Figure 2. 16-spring anharmonic oscillator chain studied
by Fermi, Pasta, Ulam, Tuck, and Menzel at Los Alamos.
The typical starting condition was the [owest—frequency
"mode" shown in the Figure, with quadratic or cubic
forces added to the Hooke's-Law [inear forces.

Figure 3. Trajectory time exposures for three-dimensional
hard spheres in the solid(left) and fluid(right) phases,
from Reference [11]. Pictures such as these showed that
purely-repulsive forces are sufficient to cause freezing.

Figure 4. Cover of the AAugust 1959 Journal of Applied
Physics. The boundary particles obey irreversible
viscoelastic equations of motion.

Figure 5. Three—phase temperature-density phase
diagrams for the Lennard-Jones pair potential, from
molecular dynamics and Monte-Carlo simulations(solid),
and for Argon, from experiment(dashed).

Figure 6. DNA, as seen using a scanning tunneling |
microscope, as described in Reference [23].

Figure 7. Boundary conditions for simple shear or heat
flow. The two sets of four shaded "Fluid-wall" particles,
at the top and bottom of the Figure, are enclosed by pairs
of horizontal reflecting walls. These fluid-wall particles

1nteract across these walls with the twelve Newtonian
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Particles shown in the central region. The fluid-wall
particles obey time-reversible thermostatted equations of

motion.

Figure 8. Four types of boundary conditions for
simulating fluid or solid deformation. The motions are
driven by (i) external fluid~wafl particles, (ii)
homogeneous periodic deformation, (iii) inhomogeneous
external fields, and (iiii) moving corrugated boundaries.

Figure 9. Fragmentation simulation showing over 14,000
two-dimensional Lennard—-Jones atoms in free expansion
from a hot compressed state.

Figure 10. Fracture simuiation showing an arrested crack
in a crystal with a tapered boundary under tension. The
imposed tensile stress caused the crack to proceed past the
stopping point, indicated by arrows, predicted by static
fracture mechanics.

Figure 11. Hard-sphere simulation of flow past a splitter
plate. Each arrow represents the averaged velocity of
about 50 hard spheres. The beginnings of a "vortex
street” can be seen.

Figure 12. Time~ and space-averaged fluid flow velocity
vectors in a two-dimensional simulation of compressible
Rayleigh-Bénard heat flow in a vertical gravitational
field. The two vortices found with molecular dynamics
match the predictions of continuum mechanics, as
described in Reference [37].

Figure 13. Schematic time-development of a phase-space
hypersphere into a short-time hyperellipsoid, and a

[onger-time Smale horseshoe.
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Figure 14. Bouncing of a mass point on an infinitely-
massive elastic ball of unit radius. The maximum height
of the bouncing point is 1.25. Plotting the same
trajectory on a semilogarithmic scale (at right) shows the
characteristic Lyapunov instability responsible for
macroscopic irreversibility.

Figure 15. Typical Lyapunov-exponent spectra for two-
and three-dimensional fluids and solids. The phase-
space stretching rates (positive Lyapunoyv exponents) and
compression rates (negative Lyapunov exponents) are
shown as symmetric Smale pairs. This equilibrium
symmetry is broken in the nonequilibrium states
discussed in Section V1.

Figure 16. Computer—generated snake on a computer-
generated fractal background.

Figure 17. Sierpinski sponge generated from a cube by
repeatedly removing 7/27 of the remaining mass. The
mass remaining after N such removals is (20/27)N. As N
diverges the resulting object becomes a zero—volume
fractal object with a fractal dimensionality of 2.727.

Figure 18. Galton Board trajectory Poincaré section
showing the history of successive colllisions for a single
mass point moving through the board. The Board
geometry and a unit cell are shown to the right. Each
point in the phase-space section on the [eft indicates a
collision. The abscissa angle o measures the [ocation of
the collision relative to the field direction. 0 and =
correspond respectively to collisions at the bottom and the
top of a scatterer. The ordinate measures the (sine of the)
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angle B, relative to the normal, of the moving particle's
velocity after each colllision. Glancing collisions
correspond to angles of n/2 or —x/2. A head-on collision
corresponds to B = 0. The "hole" corresponds to an
exceptional and interesting isolated set of quasiperiodic
Kolmogoroff-Arnold—-Moser collisions which are not
connected to the main chaotic phase space.

Figure 19. Two Galton Board ensemble Poincaré sections
showing the time-development of two ensembles, each
with 2500 mass points moving independently through
Galton Boards of the same type, and with the same field
as shown in Figure 18. The development of the ensembles
after 1, 2, 3, 5, and 10 collisions is shown.

Figure 20. Three steps .I'.i.nﬁ,i.ng mechanics, dynamics, and
irreversible thermodynamics.

Figure 21. Mass distribution in a steady-state solution
of the quantum Galton Board using the nonequilibrium
form of Schreedinger's Equation described in Section V1.
The 41x41 grid is centered on a scatterer which excludes
613 of the 1681 sites from occupancy. The time-
dependent Gaussian modification of Schreedinger's
equation is then solved for the 1068 nonvanishing values
of the real and imaginary wave-function. in the flow
illustrated here, the average flow velocity is about half
the thermal velocity, which is in turn about ten times less
than the maximum thermal velocity allowed by the
finite~difference grid. The quantum-momentum
wavelength corresponding to this solution is about 40% of
the cell width. The [eft view is a snapshot of the mass
distribution. The right view is a time average over two
wave-traversal times.
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Figure 22. Momentum distribution in the steady-state
solution of the quantum Galton Board, as shown in
Figure 21, using the nonequilibrium Schradinger equation
described in Section V1. The [eft view is a snapshot of the
momentum distribution. The right view is a time
average. The current flow is primarily negative so that
the plotted values [ie below the zero associated with the

613-site elastic scatterer.

Figure 23. Energy distribution in a steady-state solution
of the quantum Galton Board, as shown in Figure 21,
using the nonequilibrium Schraedinger equation described
in Section V1. The [eft view is a snapshot of the energy
distribution. The right view is a time average. Note the
similarity of this time average to the mass average shown.
in Figure 21.

Figure 24. Boltzmann, Gauss, Hamilton, Lyapunov,
Newton, and Schraedinger.
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